Mathe:Abschluss 2004-07-27 Brunner
1.
a) [a + bi]p = {x+yi | |y| = |b|}
b) [0]p = relle Zahlen
c) 1 ÄK, in Zahlenebene: 2 Gerade: y = i und y = -i
2.
lim f(x) für x -> 0 = - 1/2
3.
A_n(b) = (b^(n+1)-1)/(12n+12) + ln(b)
A_n(b) = b^(n+1) / 24 + ln(b) - 1/24 (ist das falsch?)
A_3(2) = ln(2) + 7/24
4. eine Variante:
a) E1=(1,0,0)+s(1,1,1)+t(1,0,0)
E2=(1,0,0)+s(1,1,1)+t(0,0,1)
b) n1=(0,sqrt(0.5),-sqrt(0.5))
n2=(sqrt(0.5),-sqrt(0.5),0)
5.
a) (i) det = 1 -> Rang = 3
(ii) -> kein b, wofür nicht lösbar
b) (i) (0,0,0)^ T, (1,1,1)^T, (2,2,2)^ T
(ii) rg(A) = 2 < 3 = rg(A b)
6. a)
fx = cos(x) + cos(x+y)
fy = cos(y) + cos(x+y)
fxx = -sin(x) - sin(x+y)
fyy = -sin(y) - sin(x+y)
fxy = -sin(x+y)
b)
P(PI/3, PI/3) -> rel. Max.
7.
a) y' = -1
b) yh = C2 / x^2 yp = x^3 / 5 + C3 / x^2
y = yh + yp
8.
Int.: 2x^4 - 10x^2 + 8
App.: -8/7x^2 + 136/35
9.
EW = 6/7
p = 10/343